302 research outputs found

    Connectionist modelling of lexical segmentation and vocabulary acquisition

    Get PDF
    Adults typically hear sentences in their native language as a sequence of separate words and we might therefeore assume, that words in speech are physically separated in the way that they are perceived. However, when listening to an unfamiliar language we no longer experience sequences of discrete words, but rather hear a continuous stream of speech with boundaries separating individual sentences or utterances. Theories of how adult listeners segment the speech stream into words emphasise the role that knowledge of individual words plays in the segmentation of speech. However, since words can not be learnt until the speech stream can be segmented, it seems unlikely that infants will be able to use word recognition to segment connected speech. For this reason, researchers have proposed a variety of strategies and cues that infants could use to identify word boundaries without being able to recognise the words that these boundaries delimit. This chapter, describes some computational simulations proposing ways in which these cues and strategies for the acquisition of lexical segmentation can be integrated with the infantsÂ’ acquisition of the meanings of words. The simulations reported here describe simple computational mechanisms and knowledge sources that may support these different aspects of language acquisition

    A robotic exploration mission to Mars and Phobos

    Get PDF
    This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included

    X-ray Polarization from Accreting Black Holes: II. The Thermal State

    Full text link
    We present new calculations of X-ray polarization from black hole (BH) accretion disks in the thermally-dominated state, using a Monte-Carlo ray-tracing code in full general relativity. In contrast to many previously published studies, our approach allows us to include returning radiation that is deflected by the strong-field gravity of the BH and scatters off of the disk before reaching a distant observer. Although carrying a relatively small fraction of the total observed flux, the scattered radiation tends to be highly polarized and in a direction perpendicular to the direct radiation. For moderately large spin parameters (a/M >~ 0.9), this scattered returning radiation dominates the polarization signal at energies above the thermal peak, giving a net rotation in the polarization angle of 90 deg. We show how these new features of the polarization spectra from BHs in the thermal state may be developed into a powerful tool for measuring BH spin and probing the gas flow in the innermost disk. In addition to determining the emission profile, polarization observations can be used to constrain other properties of the system such as BH mass, inclination, and distance. New instruments currently under development should be able to exploit this tool in the near future.Comment: 33 pages, 13 figures, submitted to Ap

    The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI

    Get PDF
    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres

    Individual differences in reward drive predict neural responses to images of food

    Get PDF
    A network of interconnected brain regions, including orbitofrontal, ventral striatal, amygdala, and midbrain areas, has been widely implicated in a number of aspects of food reward. However, in humans, sensitivity to reward can vary significantly from one person to the next. Individuals high in this trait experience more frequent and intense food cravings and are more likely to be overweight or develop eating disorders associated with excessive food intake. Using functional magnetic resonance imaging, we report that individual variation in trait reward sensitivity (as measured by the Behavioral Activation Scale) is highly correlated with activation to images of appetizing foods (e.g., chocolate cake, pizza) in a fronto–striatal–amygdala–midbrain network. Our findings demonstrate that there is considerable personality-linked variability in the neural response to food cues in healthy participants and provide important insight into the neurobiological factors underlying vulnerability to certain eating problems (e.g., hyperphagic obesity)

    Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate

    Full text link
    Photoassociation and the Feshbach resonance are, in principle, feasible means for creating a molecular Bose-Einstein condensate from an already-quantum-degenerate gas of atoms; however, mean-field shifts and irreversible decay place practical constraints on the efficient delivery of stable molecules using either mechanism alone. We therefore propose Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and optical methods, as a viable means to collectively convert degenerate atoms into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme, and added discussion; transferred to PR

    Visualizing the atomic-scale origin of metallic behavior in Kondo insulators

    Full text link
    A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. Here we visualize the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discover nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound URu2_2Si2_2, and around samarium-site defects in the topological Kondo insulator SmB6_6. These defects disturb the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the mysterious 3D quantum oscillations measured in SmB6_6 could arise from these Kondo-lattice defects, although we cannot rule out other explanations. Our imaging technique could enable the development of atomic-scale charge sensors using heavy-fermion probes

    X Her and TX Psc: Two cases of ISM interaction with stellar winds observed by Herschel

    Full text link
    The asymptotic giant branch (AGB) stars X Her and TX Psc have been imaged at 70 and 160 microns with the PACS instrument onboard the Herschel satellite, as part of the large MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program. The images reveal an axisymmetric extended structure with its axis oriented along the space motion of the stars. This extended structure is very likely to be shaped by the interaction of the wind ejected by the AGB star with the surrounding interstellar medium (ISM). As predicted by numerical simulations, the detailed structure of the wind-ISM interface depends upon the relative velocity between star+wind and the ISM, which is large for these two stars (108 and 55 km/s for X Her and TX Psc, respectively). In both cases, there is a compact blob upstream whose origin is not fully elucidated, but that could be the signature of some instability in the wind-ISM shock. Deconvolved images of X Her and TX Psc reveal several discrete structures along the outermost filaments, which could be Kelvin-Helmholtz vortices. Finally, TX Psc is surrounded by an almost circular ring (the signature of the termination shock?) that contrasts with the outer, more structured filaments. A similar inner circular structure seems to be present in X Her as well, albeit less clearly.Comment: 11 pages, Astronomy & Astrophysics, in pres
    • …
    corecore